A 4SquareMedia Website

> Business
> Comment
> Communication
> Financial
> Management
> Property
> Resources
> Sales And Marketing
> Technology
> Automation
> Communication
> Display
> Entertainment
> IT Hardware
> IT Software
> E-Newsletter Signup
> Contact

Top 10 Viewed Articles
  1. The Humble PC Gets A Whopping Makeover
  2. NSW Govt Slammed Over Botched $158M Education Tender
  3. Official Release: Vista Service Pack
  4. Talk All You Want With New Vodafone and 3 Caps
  5. Apple Unveils Snow Leopard OS
  6. Why The Federal Government Is Stuffed Without Telstra
  7. Mac OS X Snow Leopard On Sale This Friday
  8. NBN Fibre Network Slammed By US Expert He Calls It Fibre Mae
  9. ISP Filtering May Block Important Sites
  10. NRL & ARL Join Forces To Barrack For Telstra On The NBN
Top 10 Viewed Reviews
  1. Every Bit Of Defence Counts
  2. At $1,499 The Aldi Medion 17-inch Notebook Is A Steal
  3. Neat New Palm Treo Smart Phone
  4. Widescreen GPS Navigator For Concise And Clear Directions
  5. Ericsson Router Shares Mobile Broadband
  6. Telstra Walkie Talkie Phone Does Wonders
  7. Affordable Big Screen Sat-Nav
  8. Samsung D600 Given Makeover
  9. SHOOTOUT: We Pick The Best All In One Touchscreen PC
  10. $999 Quad Core Beast Sold By Aldi

SectionParent.Name / HOME

The Humble PC Gets A Whopping Makeover

By Wire Service: BBC Syndication | Monday | 12/11/2007

The humble PC is set to undergo a processor revolution with the introduction of a brand new processor, known as Penryn. It is so small and powerful that it will set a new standard for PC design speed and function.

The chip industry's unrelenting quest to build smaller, faster microchips has taken another step forward.

Chip-maker Intel has launched a range of processors, known as Penryn, which will power the next generation of PCs.

The tiny chips contain a novel material and have features just 45 nanometres (billionths of a metre) wide.

The only PC processor in the line-up of 16 chips packs 820 million of the tiny switches into an area little bigger than a postage stamp.

"Had we used the same transistors that we used in our chips 15 to 20 years ago, the chip would be about the size of a two-storey building," said Bill Kircos of Intel.

Paul Otellini, head of Intel, described the challenge of building the chips as "awe-inspiring".

Although the chip-maker is the first company to make microprocessors with such tiny features, other companies, such as Taiwan Semiconductor Manufacturing Company (TSMC), are producing other types of silicon chip.

"We have 45nm designs in production," said Chuck Byers of the firm.

TSMC manufactures chips on behalf of other companies.

Material world

The launch of the new multi-core chips comes nearly 60 years after the transistor was invented.

The brainchild of three scientists working at the research labs of the US Bell System telephone company, the tiny switches have gone on to underpin the silicon age.


how a processor works

Microprocessors use a three-step process. Fetch gets an instruction from the computer's memory. Decode decides what the instruction means. Execute involves carrying out the instruction. A microprocessor can carry out these steps millions of times a second.

how a processor works

The simple calculation 2+3 involves all three steps

how a processor works

1. When the user presses the "2" key new data enters the microprocessor. This is assigned the code 2 equals x
2.This code is then converted into binary, a numeric system that uses "1s" and "0s"
3.The binary code for 2 ­ 10 - is stored and awaits further instructions. (See Over)

how a processor works

1. The process is repeated when the 3 key is pressed but this time 3 = y. The binary code for 3 ­ 11 - is stored.

how a processor works

1. When the + key is pressed the microprocessor asks the computers main memory for instructions
2.The code x+y=z is sent to the decode unit to be translated into binary
3.The ALU - a set of circuits dedicated to numerical calculations - adds the numbers The ALU adds 10 and 11 to get 101, the binary equivalent of 5
4.The answer is stored and awaits further instructions

how a processor works

1. When the = key is pressed the microprocessor retrieves the answer ­z - and sends it for output
2.The task is complete.

The first transistors were crude devices made of several different materials and many centimetres tall.

Over the last six decades, scientists have refined the devices and can now pack millions of them on to a square of silicon.

The onward progression of the silicon industry is known as Moore's Law, and states that the numbers of transistors on a chip will double every two years.

However, as the industry devices have shrunk, researchers have been forced to confront major technical obstacles.

In the latest generation of Intel chips, critical elements of the transistors, known as gate dielectrics, do not perform as well.

As a result, currents passing through the transistors leak, reducing the effectiveness of the chip.

To overcome this, Intel has replaced the gate dielectrics, previously made from silicon dioxide, with a material based on the metal hafnium.

Hafnium is a so-called high-K material, which refers to its dielectric constant, and has a greater ability to store electrical charge than silicon dioxide.

The exact recipe for the new material has not been revealed but Intel says that it offers greater performance at such tiny scales.

Intel co-founder Gordon Moore has described the inclusion of hafnium as "one of the biggest transistor advancements in 40 years".

Tiny tweaks

In contrast, TSMC has said that its chips do not use the new material.

"We have an alternative process that we believe has even more performance value," said Mr Byers.

"One of the strategies we employ is to make it [a manufacturing process] accessible as possible and one of the ways you do that is to change the process as little as possible."

Rather than changing the design of the chips, TSMC has tweaked the manufacturing process to produce the tiny features.

"We work very hard to maintain performance levels with existing materials," said Mr Byers. "For instance, at 45nm there are only a couple or three changes."

"There are several ways to skin this cat," added Gareth Jones, also of TSMC.

However, other companies have signalled their intention to start production of microchips using similar hafnium technology.

IBM, which has developed rival technology with Toshiba, Sony and AMD, intends to incorporate the transistors into its chips in 2008.

Hewlett Packard, Lenovo and Dell have already said that they will use the new Penryn processors in top of the range PCs.

Print this article
Email this story to a friend
Link this story:
Link this page to delicious Link this page to Digg Link this page to Furlit Link this page to News Vine Link this page to Reddit Link this page to Spurl Link this page to Yahoo My Web RSS this section

'World's Fastest': SanDisk MicroSD Is Extreme   'World's Fastest': SanDisk MicroSD Is Extreme
Fast as lightening: MicroSDHC/SDXC memory cards, Ultra USB 3.0 flash drive hit Oz.
Product Rating 0

Pentax K-500 review   Pentax K-500 review
Key Features: 16.2MP APS-C CMOS Sensor; 3-inch, 921k-dot LCD screen; Sensor-based image stabilisation; ISO 100 - 51200; 1920 x 1080 at 30fps
Product Rating 0

REVIEW: D-Link Rolls Out A Super Fast Cylindrical WiFi Router   REVIEW: D-Link Rolls Out A Super Fast Cylindrical WiFi Router
Network Company D-Link has released a screamer of a router that is not only fast, but delivers significantly wider Wi Fi coverage because of new AC amplify technology.
Product Rating 5

Get the latest news
Subscribe today for your daily news of consumer electronic news...
Get the latest news


     Smart Office

     Contact us for special deals on advertising...


Apr/May 2011 issue

reviews the hot new iPhone attach device, the Zeppelin Air. And we look at what's going on in the tablet space...